REVIEWS

HEAT EXCHANGERS

I,. L., Vasiltev and S. V. Konev UDC 536.24

Many articles have been published in recent years on the subject of heater tubes or, more properly,
tubular heat exchangers (Fig. 1). These devices are of interest to engineers on account of their design
simplicity and their effectiveness in use as very high conductivity heat transmitters. They operate on the
principle that the thermal flux is transmitted through evaporation of a liquid in the evaporator section and
subsequent condensation of the vapor in the condenser section of the tube. A steady state in this process
is attained by having the vapor flow from evaporator to condenser through the center duct, while the liquid
condensate returns from condenser to evaporator through a capillary wick lining the tube wall. In the gen-
eral classification, tubular heat exchangers are devices with the ratio L/ > 10, i.e., with a length much
greater than the diameter, In many cases, however, L/ < 10 and such devices are more properly called
vaporizing chambers.

According to the temperature range over which modern tubular heat exchangers and vaporizing cham-
bers operate, one distinguishes three class of such devices:

1. Low-temperature tubular heat exchangers and vaporizing chambers for t < 400°K: the heat is
carried here by cryogenic media (Freon, nitrogen, hydrogen, neon, ammonia, etc.), water,
solutions of salts, ete.

2. Medium-temperature tubular heat exchangers (400 <t < 1200°K): liquid metals such as sodium,
rubidium, cesium, etc, are used here,

3. High-temperature tubular heat exchangers (1200 <t < 2000°K): lithium, gallium, lead, indium,
silver, etc. are used here.

Vaporizing chambers are commonly used in the low-temperature range, while tubular heat exchangers
are used primarily in the medium- and high-temperature ranges.

The maximum thermal power transmittable through a tubular heat exchanger is that at which desicca-
tion of the porous wick in the evaporator section begins while the wall temperature increases sharply. The
evaporator desiccation may be due to an inadequate transmittability of the porous wick or due to a plugging
up of the pores by various products of interaction between the heat carrier and the wick or the tube mate-
rial.

Condenser Evaporator

_ttti/z R

Fig. 1. General view of a tubular heat exchanger: 1)
outer shell; 2) vapor stream; 3) wick saturated with
liguid.
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In order to fully describe the operating principle of a tubular heat exchanger, it is necessary to first
analyze the processes taking place in the evaporator and in the condenser as well as in the thermal insula-
tion and in the wick.

The mass transfer in a tubular heat exchanger is effected by a pressure gradient resulting from a
temperature gradient. The transfer of thermal energy occurs as a result of phase transitions during evap~
oration and condensation.

For a steady-state operation of a tubular heat exchanger, the pressure drop around a closed path in-
side the tube must be ZP = 0, i.e.,

(Py(ey—Pycy + Bycey— Frey ) + Prey = Prep + Priey— Fye) = 0
At the same time, it is necessary that
ARy + AP APy (5 x4y < BP0

The action of capillary forces is described by the Laplace — Young equation:‘

1 1
3By =9 (5 =% )"
where R' and R" are the curvature radii of the three-dimensional meniscus surface.

If the liquid wets the wick, then the contact angle is less than 90° and, denoting by R and R the cur-
vature radii of the liquid—vapor interface in the condenser and in the evaporator respectively,
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When a tubular heat exchanger operates under optimal conditions, the radius of the vapor —liquid in-
terface in the condenser tends toward infinity Re — «, i.e., a thin liquid film forms on a flat surface,
Then

20 20

AP = e = —
cap Re R’min

The pressure drop APy across the vapor phase in a tubular heat exchanger is produced by friction and
inertia forces acting when vapor flows.

The flow of vapor in the evaporator and in the condenser of a tubular heat exchanger can be charac-
terized by the radial velocity U, and the axial velocity Uy. In the thermally insulated section of a tube we
will consider only the axial velocity Ug.

We will treat a tubular heat exchanger as a cylinder,

The steady-state Navier—Stokes equations in cylindrical coordinates are

U, agx +U, a;i” =~—‘1; %
+H%(r%—)+%’i—] (1)
v, %+, -—L. =
+v[_gr(%._27(ru,)+ a;”;]. (2)
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The continuity equation is

00Uy . 0GU) _

0. 3
ax or 3

Bearing in mind that the length of a tubular heat exchanger is much greater than its radius, that the
tube geometry is fixed, and that the thermophysical properties of the heat carrier are constant, we can
simplify this system of equations considerably:

dP ou oU 1 oU U
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apP ou ou U 1 oU, U
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The boundary conditions for solving this sytem of equations can be specified as follows:

at the tube wall

Ur(e) = —Ug,
r=R, U, =0, U,.(i) =0, (7)
Urey =Ug,
along the tube axis
r=0,U,=0,U,=0 at x=0. (8)

If we denote the length of the evaporator by I, the length of the thermally insulated section by Z;, and
the length of the condenser by Z,, then

h=let1l; L=+l 9

The system of partial differential equations shown here was transformed in [1] into ordinary differen-
tial equations by introducing a flow function ¥ which satisfies the continuity condition

rU, = 09/0r and — rU, = 0p/dx, (10)
and assuming that

1p=[C1+CZ%]f(§), 0<x <L, (11)

where £ = (r/R)% \

Constants C; and C, are determined from the boundary conditions. As a result, we have for the flow
function

RXUR
Y= f @) 12
o, 'Y "
=1
Then
2 X
= U, = '@, (13)
fo, R ©
=
1 U
Ur:"-T . r fl E 14
T, (14)
5=
Inserting these expressions for the velocities (13) and (14) into the Navier — Stokes equation, we ob-
tain
opP 4Re X U R : y
e r T —if—2u(f"" 1, 5
o~ “fwm, ® [f@, == J 1)
—§=l le
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Here Rey = U];.R/v is the Reynolds number for radial flow.

Differentiating Eq. (15) with respect to & will yield

d UR N
it N b 1t g ___2 II__fI!) :0 (1‘7)
. [f U= ]
!
Integrating this equation yields
U.R :
r 4 " ___2 1t + ”):Cl (18)
T®, "+ =2y +7
x=

or, using the Reynolds number Re,,

,2 " . 1
=20, g

The solution of this third-order nonlinear differential equation is given in [2, 3, 4] for the boundary
conditions

" +1")=C" (19)

FO =0, f'()=0, "(0)=0, f(1)=05. (20)
In [1] is given the solution for Re, > 1:
1 n 1 n
= — sin — N+ 0,727 cos— 1
1= 5 S 5 1 g [ g
2 sn & op—meos = j 15— 2 133sin 2 )] 91
+1-525(—n— sin. =1 — " cos 2n,+... ( = o N 21)

For liquids whose vapors have a low dynamic viscosity Eq. (13) can, to the first approximation, be
reduced to an equation of the type

f/’ _ ff” —C", (22)
The solution to this equation with the boundary conditions (7) and (8) is
1 .n o
= — n-—e¢. 23
fegy sin 5 B 3

Combining Eq. (15) and (16) yields the following expression for the pressure drop across the vapor
phase in a tube:

x\2/1.325
AP, = P(0, n—Plx, 1) =8p, U} (‘15) ( = 0,617). 2
In the evaporator
le \? (1.325
AR, (o, = 80U (~Re.> (_—Re + 0.617). (25)

The ratio of radial velocity Uy to mean axial velocity Uy of the vapor at the evaporator outlet can be
obtained from the law of energy conservation:

U _1 R
u, 2 I’
and analogously
Re, _1 R
Re, 2 le
Letting
Re: UxR s
v
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we have in the evaporator

/ 53 I R
ARy (o= (1,234 T R 7;—) o, Uz (26)

for Re » 1,

In [5] the pressure drop across the evaporation zone has been determined as
U, le
RZ

In the thermally insulated zone the hydrodynamic flow of vapor is analogous to the gas flow in a tube
with rough walls. This process can be described, in the case of laminar flow, by the Poiseuille law:

7 , x2
[1 —}———9— Re, — 3.16 + 0.05662} (1 — ?w) (27)

e

APyey=

1 9 X
AR, =—0p U |16 . 28
VT g W ( RRex) %)
According to [5], the pressure drop across the vapor phase in the thermally insulated zone is
3075 -
16U, i 0.IRe, P <" ﬁé‘)
AP = x;l i 1+ . r R x
VA Re; 5Re, -~ 18 L (RRe)™

1 —exp (_ 30 (x—1g )-

18U (x—1) | 1.106Re, RRe, (29)
Re; " 18 4 5Re, (x — I} (RRe,)™* J '

In the condensation zone of a tube the condensation process is to some extent similar to suction through
a porous wall. During condensation of vapor from a laminar boundary layer, the pressure drop is much
smaller than in the same tube without condensation or suction and, therefore, one may disregard it and con-
sider the pressure in the condenser to be constant and equal to the vapor pressure at the condenser inlet,

In this way, the pressure drop across the vapor phase in a tube with a laminar flow can be expressed
as follows:

5.3

I 4 I
AP, = APy + APy 5y + APy )= ( 1.234 - : _;—) pvui_+ 0.50, Uz <16 i > (30)

RRe,

x

o 304

8U_ni 7 ] toexp ( \
AP = —=Te [ I + L Re—3.16 - 0,056C? | - 0UsN || 0.106Re, . RRe, )
R? 9 R? 18 - BRe, L (RRe,)™?

( 30 (x — ze))

l—exp|— ———

16U (x—1g 1 1.106 Re, RRe, ‘
Re? 18 4 5Re, (x — L) (RRe,) ™

(31)

To a rough approximation for long tubes, when I; > ls, one may disregard the pressure drop in the
evaporator as well as in the condenser, and then

AP, = APy 4
If the Poiseulille law is assumed valid here, then
8ul
= 2
AP, el (32)
For turbulent vapor flow in a tubular heat exchanger the pressure drop is determined as follows:
in the evaporator
AR, =445y, vYde
ORI (33)
and, considering that
Y _05-R,
U, l,
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then

— 772
APy (= 2.230y Us; (34)
in the thermally insulated tube section, according to the Blasius formula,
Byl
AR, ;= 0.0107 £t (33)
. pvR
and in the condenser
APV o~ 0.
Therefore, the total pressure drop across a tube with a turbulent vapor flow is
— U, 1 vy
AP, = 4 450, 02— . & + 00107 - = 36
v VIR R pVan (36)

Until now we have considered only the effect of friction forces on the hydrodynamics of vapor flow in
heater tubes. When the velocity of vapor approaches the velocity of sound, however, it becomes necessary
to also consider the forces of inertia,

The velocity of sound presents probably also one of the basic limitations on the transmission of large
thermal fluxes along a tube, since shock waves may be generated as the velocity of sound is approached
and the passage at the evaporator outlet may become plugged.

The pressure drop across the wick is found according to the formula:

AP, = klj 2L (37)
oL
At the present time, porous wicks are designed in the form of metallic mesh pieces braided one to
another or in the form of metal—ceramic sleevings (such wicks are used especially in low- and medium-
temperature tubular heat exchangers). One must, therefore, know the conditions of liquid flow through a
porous wick.

In several articles on the subject of liquid flow through a porous material this flow has been assumed

to be laminar (Poiseuillian) through the pores and the formula for laminar flow of a viscous liquid in a cy-
lindrical tube

vy .
AP, = ol (38)

has been used.

This is not quite correct. During capillary suction the velocity at the wall can be considerably dif-
ferent from zero.

The flow of liguid through a porous body due to a gradient of total pressure is more correctly de-
scribed by the generalized Darcy law. For the one-dimengional case this law can be written as

J;, = — k(0)grad @, (39)
and for a horizontal flow of a liquid or for the flow of a weightless liguid this becomes simply
, ko, dP
TR e —— s —, 40
L b, dr (40)

In actual heater tubes the assumption of a one-dimensional flow through the wick is by far not always
admissible., Particularly for thin porous wicks, when the vapor velocity is high, it becomes necessary to
account for its interaction with the liquid near the surface (wave formation at the surface) and this affects
the velocity distribution in the liquid across the wick section.

For this reason, one must distinguish at least two velocity components in the liquid:
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Vapor region
Liquid — vapor interface Vapor flow .
(Py),
(Py)2
(PL), 1 wick — Liquid flow ™~ (Pp1
L
1 o
qcut qin
Condenser Evaporator

Fig. 2. Simplified model of a heater tube.

When the wick is thin, x « R, then the flow of liguid through it is described by the Poisson equation:

v1 2
0Ux+6(], :k(@P P .
Ox oy ox® oy?

This effect is disregarded, however, in wick design calculations, The most commonly used equation of
mass transfer through a porous body is [6]:

08 , 00
+

(41)

T = div (a,, grad 6), (42)
where a,, = k(89/09) is the hydraulic diffusivity,
O=h-+ S\ ﬁ‘ifi
J Py

The use of Eq. (42) is especially important for analyzing thermal shock processes in tubular heat
exchangers placed in the field of gravity, when the supplied heat causes an intensive evaporation of the
liguid and when the condensate flows through an unsaturated porous wick at a finite velocity.

In several cases where the term 7'(5%6/67%) is negligible Eq. (42) can be simplified into

09 . 0k (8)

—— = div[a,, grad0] + ——.

. (o, grad 6] + » (43)
In order to solve this equation, it is necessary to know the quantities ay, = £(8) and k = () for any

specific porous material,

The nonlinear differential equations (42) and (43) are very difficult to solve not only by analytical but
also by numerical methods, because a,(8) and k(6) are highly nonlinear and also because there is a large
difference between the initial and the subsequent rates of suction. A numerical solution of the problem con-
cerning two-dimensional mass transfer through porous media has been shown in [7].

Often an exponential approximation of ay, () is used. Equation (43) can then be rewritten as

_djg_ — i cexp 8 _.(?9__. (44)
ov Ox 0x
and, therefore, be represented in the form;
Ax? T
o OFF - 03) = exp (O1) (O — 07) — exp (8] (6] — 6., (45)

making it possible to calculate GJTH,

In order to describe the process of mass transfer through a porous wick of a heater tube, it suffices
to apply the equations of filtration to the transfer of a liquid

div [ﬂe« (VP -+ pvh)} =TI ., (46)
1 ot

where ay (9) and k() are assumed constant.
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Fig. 3. Schematic diagram of the experimental apparatus:
1) glass housing; 2) wick; 3) heater; 4) cooler; 5) glass
cover; 6) manovacuometer; 7) electric power supply; 8)
wattmeter; 9) adiabatic case; 10) differential thermocouple;
11) photo-compensation amplifier; 12) power amplifier; 13)
thermal insulation; 14) prevacuum pump; 15) vacuum pump;
16) nitrogen trap; 17) vacuometer;18)vacuometer pickoffs;
19) thermocouples; 20) low-resistance potentiometer; 21)
automatic recorder; 22) thermocouple reference junction.

For a homogeneous liquid in an isotropic porous material this equation in cylindrical coordinates be-

comes
18wk (P o) 1 0 k(0P i)
r'ar[n (ar‘par)]+rﬁ'aw[n 011:“’6«4:]

d [ok (0P | ok 3o )
R i TP L O B o et
‘ax[nkax_rpax)] nar’

where ¥ is the suction potential,

If density p depends on pressure only, then potential & and Eq. (46) can be used:

. 2k Op
div[ £ yo | =1
v[£ve) T 2

For steady-state conditions, with k and n constant, Eq. (48) becomes the Laplace equation:
v = 0. (49)
Its solution is

®—@, =Cx. (50)

In order to optimize the performance of a tubular heat exchanger, one often designs the wicks with
structural —- mechanical properties which vary along a space coordinate, since optimal condensation in the
condenser and optimal evaporation in the evaporator require different pore sizes. For variable permeabil-
ity which is a function of a coordinate, then, the Laplace equation becomes

4 (k 43) —0. (51)
dx

If we introduce a new space variable 8, then Eq. (51) can be reduced to (49) and

@0~ p=|% . (52)
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TABLE 1. Calculated Values of Coefficient K for Low-Boiling Liqg-

uids
i Thoil: 'K sem®lp, g fem- sec |9 dyne | k=por
Heat carrier boils o 8 ms Jem , erg/g /. g/se03
Ammonia =30°C | 939,76 | 0,702 83.10-6 | 32,8 1358 .107 | 863510
Water 20°C 373,16 | 0,998 | 1005.10-% | 73 2450 -107 | 1780.1012
Methanol 20°C 337,67 | 0,795 | 5840.10-¢ | 92,6 | 1177 .107 |  36.10
Acetone 20°C 399,26 | 0,790 | 3250-10-6 | 23,7 522 .107 | 30,4.-10'%
Ethanol 20°C 351,46 | 0,789 6950.10-8 22,8 919,6.107 | 24,4.1012
H, 20°C 20,28 | 0,0714 140-10-¢ 2,52 | 454 521.10°
He 1 3°K 4,22 | 0,1425 33.10-° 0,22 | 23,6 22,4-10%
He I1 2°K — 0,1468 | 9,4-10-5 0,31 | 23,3 113-108
He I 1. 5K — 0,1468 | 1,74-10°% 0,33 | 22,5 606.108
Freon-12 0°C 243,2 1,394 | 2750.10% | 12 154,5.10¢ | 9,37.101
Disregarding the effects of gravity, we can write Eq. (51) as
d dpP
—{k— =0, (53)
dx dx
. and its solution is
AP, = P— Py =cf. (54)

An essential role in ensuring optimal operating conditions is playedby the condenser section of a tubularheat ex-
changer. Its surface area must be sufficiently large to ensure that all the vapor fed to it condenses and the
porous wick must have characteristics which will ensure that all the condensate is removed and carried to
the evaporator,

Let us consider a simplified model of the wick in the condenser section of a tubular heat exchanger
(Fig. 2). We assume the wick to be rigid and isotropic with a porosity factor II, we also assume a constant
temperature along the entire condenser length and, therefore, a constant pressure Py () The curvature
radius of the vapor - liquid interface is Rg.

The condensate flows through the condenser wick at a mean velocity ﬁL: while there is no hydro-
dynamic interaction between the vapor stream in the tube core and the condensate stream in the porous
wick, The thermal flux is constant along the entire condenser.

We unroll the porous wick in the condenser into a flat plate and we consider the mass balance in an
element of thickness dx, widthb, and height @, The transverse cross section area is S = ab.

The stream of liquid leaving such an element ig

_ Ly (55)
I _pLS(UL { ~dx——dx)-
As a result of condensation having occurred on surface §,
I=1,+1, (56)
where Iy = pyUybdx.

The equation of moments on this element in the x-direction is
oL
AM = —é——- b dx. (57)

The moment on the liquid in a porous wick changes on account of friction and inertia forces acting on
the flowing liquid, £F = AM.

If the curvature radius of the vapor—liquid interface is R at the entrance to the element and R + dR

at the exit from the element, then the force driving the liguid — a result of the pressure gradient (an effect
of the capillary potential) ig

26 dR
Fe=_—""-, " TIS. 58
R R (58)
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This driving force is balanced by the friction forces

dpP
Fy =TS dx. (59)

Assuming that the liquid flows through the wick according to Darcy (40), we have
20 dR _ o1 dULY ., (60)

k]d §—
v * R R g dx

We now consider the heat balance in a condenser,

Let Q; = Irhy, be the quantity of heat supplied to surface 8 of a wick element by convection, Q,=Iyhy
be the quantity of heat supplied to the wick surface bdx by vapor condensation, Qs = gbdx be the guantity of
heat carried off the outer surface bdx of the wick, and @ = Iyhy, + diphy /dx be the quantity of heat carried
off the wick element through surface S. Then

Q1 -+ Qz = Qa + Qq: (61)

Iy + Kby = gbdx + I Ry +d(1§h7‘)d (62)

After simple transformations, we have
v, _ gb __ (63)
dx py (y— hy ) TIS p 11Sr

Integrating (63) yields

=P, (64)
LI"ISr
and, since Iy = pyIiSUY,
AL (65)
r
Inserting Eq. (64) into (60) and integrating, we obtain
A R dR 3 ’
9 0 AR _ 22V xdx, (66
Skv - xdx+.s‘S j‘ (HSr) )

0 R,

Considering that R, — =, we have after integration:

2 1 b \? 2

kgbv ,&_sﬁz_zﬁ(q—) L (67)
r 2 Ry prg \ IlSr 2
—/2
20 1
le= {S R, H 1 @) ] (68)
r PLE ( HSf)
nzs” SN . S ¥
g=—kprg AT (kgpngmszvz + 20p1.¢ ﬂ——) , (69)
i‘c
I '
S 172
Q.= Y gbdx = — kpy, gI'PSzr — T1Sr [(vlcka glISy? + 2opLg—R—] . (70)
1

0
If the energy and the mass balance in the evaporator section of a tubular heat exchanger are treated
analogously, then one can determine the maximum evaporator length I, for a given thermal flux density at
the evaporator wall ¢ or the maximum thermal power Qy,,, which can be drawn from the evaporator with
a giver wick geometry, It is assumed here that evaporation takes place at the wick surface and that the

heat i, supplied to the evaporation zone by convection through the porous wall. Then
[, = -~ tors —1 (1)
Rugh[2 ———— +k —>
a ( Y oL
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Fig. 4. Curves of capillary suction kinetics for vari-
ous porous materials: 1) glass fiber wick; 2) Alundum
wick with ethanol; 3) ethacryl wick with ethanol; v(cm
/sec), h (cm), t (min), and 1/h (cm™Y),

2 8010 \!12
Q. = —kPL gresr 1 oS L g _ 8010
e 4 q e eg 2 4 p’L [ gn?‘Rl /} B
e (72)
b o Bl

Usually Rj is found experimentally from the height of the liquid rise in the porous wick.

For a given thermal flux g and given wick dimensions (S, I, b), therefore, we know the necessary con-
denser length [, and evaporator length [,. For the final determination of the thermal flux through a tube of
given dimensions, however, one must take into account the length of the thermally insulated heat exchanger
section and the tube position in the field of gravity. '

For laminar vapor and liquid flow:

AP, > AP, 4+ AP, - AP,

cap
53 | 1 ki 1
=|1.234 +— .—e~)—"2+ 8 —T— 2 Elv, [+ {0 — Isin . 73
( T Re. R pvl RERe, pvl Loy —eyglsina (73)
From this:
oV . g 72
(1 — *-> glsino + fi.. ——}
_ kg /p_y)_ (klpL)? (ﬂf_ oL g (ﬂ) : (74)
oM \'py sme | o } M o,/
M = 1234 + M‘
RRe,
l=1l,+ 1.+,
Accordingly, the thermal flux transmitted through the tube is
g=1r (75)

In order to study the heat and the mass transfer processes in low-temperature tubular heat exchan-
gers, the authors have developed an experimental apparatus (Fig. 3) consisting of a quartz tube 7 = 48 cm,
d; = 37 mm, d, = 32 mm, and fused at one end. An electric heater in an adiabatic case was placed at the
fused end of the tube. A cooler — a heat exchanger — was placed at the other end of the tube. Liquid at a
temperature of 10°C was fed into the heat exchanger from a precision thermostat, The power passing
through the tube was measured with a wattmeter, power was also measured in the condenser for control
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Fig. 5. Temperature distribution along the tubular heat exchanger sur-
face with: a) ethanol; 1) 5 W; 2) 13 W; 3) 18 W; 4) 20 W, power trans-
mitted: b) water; 1) 6.5 W; 2) 28 W; 3) 75 W; 4) 1256 W, power trans-

mitted. (Solid lines refer to the tube surface, dashed lines refer to the

vapor phase.) I (cm), T (°C).

Fig. 6. Effective thermal conductivity of tubular heat exchanger as a
function of transmitted power: 1) ethanol; 2) water. A (W/m -°K), P(W).

purposes with thermocouples installed at the inlet and at the outlet. The power here was calculated by the

formula:
Q = GeAt, (76)

with At denoting the temperature drop.

The temperature distribution along the tube wall was measuredwith 11 copper —constantan thermo-
couples feeding signals into the automatic recorder.

The vapor pressure in the condenser was measured with a standard vacuometer.

In order to reduce the heat losses, the tube was placed under a glass cover with the pressure re-
duced to 107 mm Hg. A metallic shield was placed inside the cover so as to suppress thermal radiation,
Water and ethyl alcohol were used as the working liguids, their characteristics being listed in Table 1.

The wick was made of sintered glass fiber in the shape of a cylinder. It was fabricated as follows.
Asbestos yarn was wound on a metal tube, then glass fiber on top of it along the tube making the outer di-
ameter of the coil equal to the inner diameter of the quartz tube and the coil thickness 3 mm. The wick
was then placed in a mold, to equalize the temperature distribution, and put in a shaft furnace at 800°C.
After several minutes of heating the furnace was switched off and the wick was cooled in it for 4 h. Sub-
sequently, the wick was ground and its ends cut off, it was then slipped off the metal tube for inspection of
its capillarity and porosity as well as for measuring the thermal conductivity of the material, The final
porosity was I = 29.9%, the maximum capillary rise was 20 cm for alcohol, and the fiber diameter was
10 gm. Curves of suction kinetics for capillary-porous materials are shown in Fig. 4. An analysis of
these curves will show that a wick with a longitudinal capillary structure (glass fiber) has better charac-
teristics than a wick with a composite longitudinal —transverse capillary structure,

The tube for this experiment was prepared by a special technology. The liquid was poured into the
tube held in a vertical position. Vapors of the liquid and uncondensable vapors in air were removed by a
vacuum pump, whereupon the heater was switched on. The vacuum pump was run for 20 min. In order to
prevent vapors of the liquid from entering the pump, a nitrogen trap was placed in front of the pump across
the duct. After evacuation, the tube was hermetically sealed.
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The experimental procedure was as follows. Thermal power was supplied to the evaporator inter-
mittently, Each power shot was applied when a steady-state had been reached following the application of the
preceding shot, and these steady-state steps were recorded on the instrument,

To the tube containing alcohol the power was applied in 2-W shots, to the tube containing water it was
applied in 10-W shots. The temperature distribution along the tube as well as the vapor pressure in the
tube were measured throughout the experiment. The vapor temperature in the tube was determined from
the saturated vapor pressure. The temperature distributions on the outer surface of the quartz fube as well
as the vapor pressures are shown in Fig. 5a, b.

The effective thermal conductivity of the heater tube at each power application was calculated accord-
ing to the formula:

A = QL/SAL,

with @ denoting the thermal power in the condenser, L the length of tube between heater and condenser, S
the tube cross section area, and At the temperature drop.

The effective thermal conductivity is shown in Fig. 6 as a function of power, for ethanol and water.
It is evident here that the effective thermal conductivity of the tube is three times higher with water than
with ethanol,

For comparison, the characteristics of various liquids used as heat carriers in low-temperature
tubular heat exchangers are given in Table 1. On the basis of these data, one may conclude that water and
ammonia are the most effective heat carriers,

In the range of helium temperatures the most effective heat carrier seems to be helium II below 2°K.

It ought to be noted, in conclusion, that the theory of tubular heat exchangers has to this day not been
finalized yet, In order to verify the hypotheses proposed so far, one must have a sufficient amount of data
available on a wide range of tube materials and heat carrier liquids,

NOTATION

is the length of heater tube;

is the outer diameter of tube;

is the pressure;

is the liquid surface tension coefficient;

is the minimum curvature radius;

is the velocity;

is the density;

are the dynamic and kinematic viscosity;

is the radius — the distance from the tube axis to the inner wick surface;
is the mass flow density in the tube;

is the heat flow density in the tube;

is the permeability of porous wick in the tube;
is the mass content in the wick;

is the capillary potential;

is the propagation velocity of the mass front in the porous wick;
is the altitude above sea level;

is the mass flow in the tube;

is the thermal flux in the tube;

is the porosity of the wick;

is the acceleration of free fall;

i{s the gravitational constant;

is the rate of liquid flow;

is the specific heat;

is the temperature drop.
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Subscripts

\Y denotes vapor;
L denotes liquid;
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denotes evaporator;

denotes condenser;

denotes thermally insulated zone;
denotes capillary;

denotes friction;

denotes radial coordinate;
denotes axial coordinate;

denotes aerodynamic resistance;
denotes inertia,
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